Bayes-Optimal Scorers for Bipartite Ranking

نویسندگان

  • Aditya Krishna Menon
  • Robert C. Williamson
چکیده

We address the following seemingly simple question: what is the Bayes-optimal scorer for a bipartite ranking risk? The answer to this question helps elucidate the relationship between bipartite ranking and other established learning problems. We show that the answer is non-trivial in general, but may be easily determined for certain special cases using the theory of proper losses. Our analysis immediately establishes equivalence relationships between several seemingly disparate approaches to bipartite ranking, such as minimising a suitable class-probability estimation risk, and minimising the p-norm push risk proposed in Rudin (2009).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bipartite Ranking: a Risk-Theoretic Perspective

We present a systematic study of the bipartite ranking problem, with the aim of explicating its connections to the class-probability estimation problem. Our study focuses on the properties of the statistical risk for bipartite ranking with general losses, which is closely related to a generalised notion of the area under the ROC curve: we establish alternate representations of this risk, relate...

متن کامل

Bipartite ranking: risk, optimality, and equivalences

We present a systematic study of the bipartite ranking problem, with the aim of delineating its connections to the class-probability estimation problem. Our study focuses on the properties of the statistical risk for bipartite ranking, which is closely related to the area under the ROC curve: we establish alternate representations of the risk, relate the Bayes-optimal risk to a class of probabi...

متن کامل

On Theoretically Optimal Ranking Functions in Bipartite Ranking

This paper investigates the theoretical relation between loss criteria and the optimal ranking functions driven by the criteria in bipartite ranking. In particular, the relation between AUC maximization and minimization of ranking risk under a convex loss is examined. We characterize general conditions for ranking-calibrated loss functions in a pairwise approach, and show that the best ranking ...

متن کامل

Upper bounds and aggregation in bipartite ranking

One main focus of learning theory is to find optimal rates of convergence. In classification, it is possible to obtain optimal fast rates (faster than n−1/2) in a minimax sense. Moreover, using an aggregation procedure, the algorithms are adaptive to the parameters of the class of distributions. Here, we investigate this issue in the bipartite ranking framework. We design a ranking rule by aggr...

متن کامل

Optimal edge ranking of complete bipartite graphs in polynomial time

An edge ranking of a graph is a labeling of edges using positive integers such that all paths connecting two edges with the same label visit an intermediate edge with a higher label. An edge ranking of a graph is optimal if the number of labels used is minimum among all edge rankings. As the problem of finding optimal edge rankings for general graphs is NP-hard [12], it is interesting to concen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014